$$
\begin{gathered}
\text { EE } 330 \\
\text { Lecture } 28
\end{gathered}
$$

Two-Port Amplifier Models

Spring 2024 Exam Schedule

Exam 1 Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Review from Previous Lecture

Two-Port Representation of Amplifiers

- Two-port model representation of amplifiers useful for insight into operation and analysis
- Internal circuit structure of the two-port can be quite complicated but equivalent two-port model (when circuit is linear) is quite simple

Review from Previous Lecture

Two-port representation of amplifiers

Amplifiers can be modeled as a linear two-port for small-signal operation

In terms of y-parameters
Other parameter sets could be used

- Amplifier often unilateral (signal propagates in only one direction: wlog $\mathrm{y}_{12}=0$)
- One terminal is often common

Two-port representation of amplifiers

 Unilateral amplifiers:

- Thevenin equivalent output port often more standard
- $\mathrm{R}_{\mathrm{IN}}, \mathrm{A}_{\mathrm{V}}$, and $\mathrm{R}_{\mathrm{OUT}}$ often used to characterize the two-port of amplifiers

Unilateral amplifier in terms of "amplifier" parameters

$$
R_{I N}=\frac{1}{y_{11}} \quad A_{V}=-\frac{y_{21}}{y_{22}} \quad R_{\text {out }}=\frac{1}{y_{22}}
$$

Review from Previous Lecture
 Amplifier input impedance, output impedance and gain are usually of interest

 Why?Example 1: Assume amplifier is unilateral

- Can get gain without reconsidering details about components internal to the Amplifier !!!
- Analysis more involved when not unilateral

Review from Previous Lecture

Amplifier input impedance, output impedance and gain are usually of interest Why?
Example 2: Assume amplifiers are unilateral

$$
\begin{aligned}
& V_{\text {OUT }}=\left(\frac{R_{L}}{R_{L}+R_{\text {OUT3 }}}\right) A_{V 3}\left(\frac{R_{\text {IN } 3}}{R_{\text {OUT } 2}+R_{\text {IN } 3}}\right) A_{V 2}\left(\frac{R_{\text {IN } 2}}{R_{\text {OUT } 1}+R_{\text {IN } 2}}\right) A_{V 1}\left(\frac{R_{\text {IN } 1}}{R_{S}+R_{\text {IN } 1}}\right) V_{\text {IN }}
\end{aligned}
$$

- Can get gain without reconsidering details about components internal to the Amplifier !!!
- Analysis more involved when not unilateral

Two-port representation of amplifiers

- Amplifier often unilateral (signal propagates in only one direction: wlog $\mathrm{y}_{12}=0$)
- One terminal is often common
- "Amplifier" parameters often used

- Amplifier parameters can also be used if not unilateral
- One terminal is often common

Amplifier parameters

Determination of small-signal model parameters:

In the past, we have determined small-signal model parameters of electronic devices from the nonlinear port characteristics

$$
\left.\begin{array}{l}
\mathbf{I}_{1}=\mathbf{f}_{1}\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right) \\
\mathbf{I}_{2}=\mathbf{f}_{2}\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right)
\end{array}\right\} \quad \mathbf{y}_{\mathrm{ij}}=\left.\quad \frac{\partial \mathbf{f}_{\mathrm{i}}\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right)}{\partial \mathbf{V}_{\mathbf{j}}}\right|_{\overline{\mathrm{V}}=\overline{\mathbf{V}}_{\alpha}}
$$

- Will now determine small-signal model parameters for two-port comprised of linear networks (instead of just electronic devices)
- Could go back to the nonlinear models and analyze as we did for electronic devices
- Will follow a different approach (results are identical) that is often much easier

Two-Port Equivalents of Interconnected Two-ports

Example:

- could obtain two-port in any form
- often obtain equivalent circuit w/o identifying independent variables
- Unilateral iff $\mathrm{A}_{\mathrm{VR}}=0$ (or if $\mathrm{A}_{\mathrm{v}}=0$ though would probably relabel ports)
- Thevenin-Norton transformations can be made on either or both ports

Two-Port Equivalents of Interconnected Two-ports

Example:

Two-Port Equivalents of Interconnected Two-ports

$$
\begin{aligned}
& \boldsymbol{v}_{1}=\boldsymbol{i}_{1} \mathrm{R}_{i n}+\mathrm{A}_{\mathrm{VR}} \boldsymbol{v}_{2} \\
& \boldsymbol{v}_{2}=\boldsymbol{i}_{2} \mathrm{R}_{0}+\mathrm{A}_{\mathrm{Vo}} \boldsymbol{v}_{1}
\end{aligned}
$$

Or equivalently in form where port voltages are the independent variables

$$
\begin{aligned}
& \boldsymbol{i}_{1}=\boldsymbol{v}_{1}\left(\frac{1}{\mathrm{R}_{\text {in }}}\right)+\boldsymbol{v}_{2}\left(\frac{-\mathrm{A}_{\mathrm{VR}}}{\mathrm{R}_{\text {in }}}\right) \\
& \boldsymbol{i}_{2}=\boldsymbol{v}_{1}\left(\frac{-\mathrm{A}_{\mathrm{V} 0}}{\mathrm{R}_{0}}\right)+\boldsymbol{v}_{2}\left(\frac{1}{\mathrm{R}_{0}}\right)
\end{aligned}
$$

Determination of two-port small-signal model parameters
(One method will be discussed here)
A method of obtaining $\mathrm{R}_{\text {in }}$

Terminate the output in a (small signal) short-circuit

$$
\mathrm{R}_{\text {in }}=\frac{v_{\text {test }}}{i_{\text {test }}}
$$

Determination of two-port small-signal model parameters

A method of obtaining $\mathrm{A}_{\mathrm{V} 0}$

Terminate the output in a (small signal) open-circuit

Determination of two-port small-signal model parameters

A method of obtaining R_{0}

Terminate the input in a (small-signal) short-circuit

$$
\begin{aligned}
& \boldsymbol{i}_{1}=\boldsymbol{v}_{1}\left(\frac{1}{R_{i n}}\right)+\boldsymbol{v}_{2}\left(\frac{-\mathrm{A}_{\mathrm{VR}}}{\mathrm{R}_{\text {in }}}\right) \\
& \boldsymbol{i}_{2}=\boldsymbol{v}_{1}\left(\frac{-\mathrm{A}_{\mathrm{Vo}}}{\mathrm{R}_{0}}\right)+\boldsymbol{v}_{2}\left(\frac{1}{\mathrm{R}_{0}}\right)
\end{aligned} \quad \stackrel{\boldsymbol{v}_{1}=0}{\mathrm{R}_{0}=\frac{\boldsymbol{v}_{\text {test }}}{\boldsymbol{i}_{\text {test }}}}
$$

Determination of two-port small-signal model parameters

A method of obtaining $A_{V R}$

Terminate the input in a (small-signal) open-circuit

$$
\left.\begin{array}{l}
i_{1}=\boldsymbol{v}_{1}\left(\frac{1}{R_{i n}}\right)-\boldsymbol{v}_{2}\left(\frac{\mathrm{~A}_{\mathrm{VR}}}{\mathrm{R}_{\text {in }}}\right) \\
i_{2}=\boldsymbol{v}_{1}\left(\frac{-\mathrm{A}_{\mathrm{Vo}}}{\mathrm{R}_{0}}\right)+\boldsymbol{v}_{2}\left(\frac{1}{\mathrm{R}_{0}}\right)
\end{array}\right\} \quad \stackrel{\boldsymbol{v}_{\text {out-test }}}{\boldsymbol{v}_{\text {test }}}
$$

Determination of Amplifier Two-Port Parameters

- Input and output parameters are obtained in exactly the same way, only distinction is in the notation used for the ports.
- Methods given for obtaining amplifier parameters $R_{\text {in }}, R_{\text {OUT }}$ and A_{V} for unilateral networks are a special case of the non-unilateral analysis by observing that $\mathrm{A}_{\mathrm{VR}}=0$.
- In some cases, other methods for obtaining the amplifier parameters are easier than the " $\mathrm{V}_{\text {TEST }}: \mathrm{I}_{\text {TEST }}$ " method that was just discussed

Examples

Determine $\mathrm{V}_{\text {OUTQ }}$ and the SS voltage gain (A_{V}), assume $\beta=100$
This is a fundamentally different circuit than what we have considered previously !
(A_{V} is one of the small-signal model parameters for this circuit)

Examples

(A_{v} is one of the small-signal model parameters for this circuit)

Examples

dc equivalent circuit

Determine $\mathrm{V}_{\text {OUTQ }}$

dc equivalent circuit
This circuit is most practical when $\left.\mathrm{I}_{\mathrm{B}} \ll\right|_{\mathrm{BB}}$ With this assumption,

$$
\begin{gathered}
V_{\mathrm{B}}=\left(\frac{\mathrm{R}_{\mathrm{B} 2}}{R_{\mathrm{B} 1}+\mathrm{R}_{\mathrm{B} 2}}\right) 12 \mathrm{~V}=2 \mathrm{~V} \\
\mathrm{I}_{\mathrm{CQ}}=\mathrm{I}_{\mathrm{EQ}}=\left(\frac{\mathrm{V}_{\mathrm{B}}-0.6 \mathrm{~V}}{\mathrm{R}_{1}}\right)=\frac{1.4 \mathrm{~V}}{.5 \mathrm{~K}}=2.8 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{OUTQ}}=12 \mathrm{~V}-\mathrm{I}_{\mathrm{CQ}} R_{1}=6.4 \mathrm{~V}
\end{gathered}
$$

Note: This Q-point is nearly independent of the characteristics of the nonlinear BJT !

Examples

This voltage gain is nearly independent of the characteristics of the nonlinear BJT!

This is a fundamentally different amplifier structure

It can be shown that this is slightly non-unilateral

Determine SS voltage gain

$$
\left.\begin{array}{c}
v_{\text {our }}=-\mathrm{g}_{\mathrm{m}} v_{\mathrm{BE}} \mathrm{R}_{2} \\
\boldsymbol{v}_{\text {IN }}=v_{\mathrm{BE}}+\mathrm{R}_{1}\left(v_{\mathrm{BE}}\left[\mathrm{~g}_{\pi}+\mathrm{g}_{\mathrm{m}}\right]\right)
\end{array}\right\}
$$

$$
g_{m} R_{1} \text { typically >>1 }
$$

$$
\mathrm{A}_{V} \cong \frac{-\mathrm{R}_{2} \mathrm{~g}_{\mathrm{m}}}{\mathrm{R}_{1} \mathrm{~g}_{\mathrm{m}}}=\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}=-4
$$

Examples

Determine $\mathrm{V}_{\text {OUTQ }}, \mathrm{R}_{\mathrm{IN}_{\mathrm{N}}}, \mathrm{R}_{\text {OUT }}$, and the SS voltage gain, and A_{VR} assume $\beta=100$

Examples

This is the same as the previous circuit !

$$
V_{C C}=12 \mathrm{~V}
$$

$$
\begin{gathered}
\mathrm{V}_{\text {OUTQ }}=6.4 \mathrm{~V} \\
\mathrm{I}_{\mathrm{CQ}}=\frac{5.6 \mathrm{~V}}{2 \mathrm{~K}}=2.8 \mathrm{~mA}
\end{gathered}
$$

Note: This Q-point is nearly independent of the characteristics of the nonlinear BJT !

The dc equivalent circuit

Examples

Determine $\mathrm{V}_{\text {OUTQ }}, \mathrm{R}_{\mathbb{N}_{\mathbb{N}}}, \mathrm{R}_{\text {OUT }}, \mathrm{A}_{\mathbb{V}}$, and $\mathrm{A}_{\mathrm{VR}} ;$ assume $\beta=100$
$\left(A_{V}, R_{I N}, R_{\text {OUT }}\right.$, and $A_{V R}$ are the small-signal model parameters for this circuit)

Examples

Determine the SS voltage gain A_{V}

The SS equivalent circuit

$$
A_{V} \cong-\frac{5.6 V}{26 m V}=-215
$$

Note: This Gain is nearly independent of the characteristics of the nonlinear BJT !

Examples

Determination of R_{IN}

$$
\begin{aligned}
& R_{\mathrm{IN}}=R_{\mathrm{B} 1} / / R_{\mathrm{B} 2} / / r_{\pi} \cong r_{\pi} \\
& r_{\pi}=\left(\frac{\mathrm{I}_{\mathrm{CQ}}}{\beta V_{\mathrm{t}}}\right)^{-1}=\left(\frac{2.8 \mathrm{~mA}}{100 \bullet 26 \mathrm{mV}}\right)^{-1}=928 \Omega \\
& R_{\mathrm{IN}}=R_{\mathrm{B} 1} / / R_{\mathrm{B} 2} / / r_{\pi} \cong r_{\pi}=930 \Omega
\end{aligned}
$$

Examples Determination of $\mathrm{R}_{\text {OUT }}$

The SS equivalent circuit

$$
\begin{gathered}
\mathrm{R}_{\mathrm{OUT}}=\frac{\boldsymbol{v}_{\text {TEST }}}{\boldsymbol{i}_{\text {TEST }}}=\mathrm{R}_{2} / / \mathrm{r}_{\mathrm{o}} \\
\mathrm{r}_{\mathrm{o}}=\left(\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{AF}}}\right)^{-1}=\left(\frac{2.8 \mathrm{~mA}}{200 \mathrm{~V}}\right)^{-1}=(1.4 \mathrm{E}-5)^{-1}=71 \mathrm{~K} \Omega \\
\mathrm{R}_{\mathrm{OUT}}=\mathrm{R}_{2} / / \mathrm{r}_{\mathrm{o}} \cong R_{2}=2 \mathrm{~K}
\end{gathered}
$$

Examples Determine $A_{V R}$

The SS equivalent circuit

$\boldsymbol{v}_{\text {OUT TEST }}=0$

$$
A_{V R}=0
$$

Determination of small-signal two-port representation

$A_{V} \cong-215$
$\mathrm{R}_{\mathrm{IN}} \cong \mathrm{r}_{\pi}=930 \Omega$
$\mathrm{R}_{\text {OUT }} \cong R_{2}=2 K$

This is the same basic amplifier that was considered many times

Relationship with Dependent Sources ?

Dependent sources from EE 201

Example showing two dependent sources

Relationship with Dependent Sources ?

Dependent sources from EE 201

Voltage

Transconductance Amplifier

Voltage Dependent
Voltage Source

Current Dependent Voltage Source

Current
Current
Amplifier

Relationship with Dependent Sources ?

It follows that

$$
V_{2}=A_{V} V_{1}
$$

Voltage dependent voltage source is a unilateral floating two-port voltage amplifier with $R_{\text {IN }}=\infty$ and $R_{\text {OUT }}=0$

Relationship with Dependent Sources ?

It follows that

Current dependent voltage source is a unilateral floating two-port transresistance amplifier with $\mathrm{R}_{\text {IN }}=0$ and $\mathrm{R}_{\text {OUT }}=0$

Relationship with Dependent Sources ?

It follows that

Current dependent current source is a floating unilateral two-port current amplifier with $\mathrm{R}_{\mathrm{IN}}=0$ and $\mathrm{R}_{\mathrm{OUT}}=\infty$

Relationship with Dependent Sources ?

It follows that

Voltage dependent current source is a floating unilateral two-port transconductance amplifier with $\mathrm{R}_{\mathrm{IN}}=\infty$ and $\mathrm{R}_{\mathrm{OUT}}=\infty$

Dependent Sources

Dependent sources are unilateral two-port amplifiers with ideal input and output impedances

Dependent sources do not exist as basic circuit elements but amplifiers can be designed to perform approximately like a dependent source

- Practical dependent sources typically are not floating on input or output
- One terminal is usually grounded
- Input and output impedances of realistic structures are usually not ideal Why were "dependent sources" introduced as basic circuit elements instead of two-port amplifiers in the basic circuits courses???

Why was the concept of "dependent sources" not discussed in the basic electronics courses???

Stay Safe and Stay Healthy !

End of Lecture 28

Basic Amplifier Structures

- MOS and Bipolar Transistors both have 3 primary terminals
- MOS transistor has a fourth terminal that is generally considered a parasitic terminal

Besichentifiersuructures

Observation:

These circuits considered previously have a terminal (emitter or source) common to the input and output in the small-signal equivalent circuit

For BJT, E is common, input on B , output on C
Termed "Common Emitter"
For MOSFET, S is common, input on G, output on D Termed "Common Source"

Basic Amplifier Structures

Small Signal Transistor Models as 3 -terminal Devices

Amplifiers using these devices generally have one terminal common and use remaining terminals as input and output

Since devices are nearly unilateral, designation of input and output terminals is uniquely determined

Three different ways to designate the common terminal

Source or Emitter
Gate or Base
Drain or Collector
termed Common Source or Common Emitter
termed Common Gate or Common Base
termed Common Drain or Common Collector

Basic Amplifier Structures

Identification of Input and Output Terminals is not arbitrary
It will be shown that all 3 of the basic amplifiers are useful !

